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Choice of Starting Vectors in Relaxation 

This note is concerned with the first step ir, the solution of dif?erence equations 

by relaxation methods. A by-product of the relaxation parameter calculation is 
used to form an effective first guess with very little cost in additional compcta~ion. 

1. INTR~DUCTIOS~ 

An accurate estimate of the spectral radius p. of the Jacobi iteration matrix is 
necessary to obtain the optimal asymptotic rate of convergence by any of the sevcrai 
variants of successive over-relaxation [l]. A survey of the literature reveals that Togo 
distinct points of view prevail on how this estimate should be made. One approaclh 
is to attack the eigenvalue problem directly and calculate the spectral radius as a 
preliminary to the main iteration [ 1) 2, 31. In the second method, a value is assumed 
for p and the iteration is started. As the sequence of vectors proceeds toward the 
solution: a new estimate is obtained by comparing the theoretical and the observed 
rates of convergence [4, 5. 61. 

Since all computation in the second method brings the vector closer to the desired 
solution. it seems to be the more attractive. However, in practice the direct approach 
often requires less computation overall because of the more accurate estimate of pi 
The reiative merits of the two techniques apparently have not been settled to 
everyone’s satisfaction. The purpose of this note is to demonstrate a combination of 
desirable features from both ideas by forming an initial guess using the eigenvector 
associated with p. 

II. COMPUTATION OF THE SPECTRAL Rmm 

To be specific, the following discussion is based on the assumption that a set of 
difference equations is to be solved by the Cyclic Chebyshev method. 

That is, the equations are written in the form 

[fit m:‘j k:j = [i:j 
(1; 

where the coefficient matrix is symmetric and positive definite and its partitions 
D, , D, , and B are sparse band type matrices. The equations which describe ihe 
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iteration are taken from [I]. Beginning with an initial guess xi’), we construct the 
sequence 

x(;lm+l) = w 2,,,+I{D;1Bxy' + D;lk, _ XFm-l)} + x~lt~-l), m > 0, 

ypm;f) = w c9 
2 Brrl+2(D;1Bt~f"'+1) + D,lk, - x:""') + x:'~), ill > 0, 

w -1 I- 

w2 = l/(1 - pZ/2) 

w n+1 = l/U - P"%/4L 

where p is a number in the interval 0 < p < 1. For optimal asymptotic rate of 
convergence, p must be the spectral radius of 

0 D;lB 
D,lBt 1 0 . (3) 

The two by two partitioning of this matrix allows us to carry out the calculation 
for p2 using the smaller matrix D;lBfD;lB. Several methods are available for 
computing the dominant eigenvalue h of 

XD,v, = BtDylBv,. (4) 

We choose the power method for two reasons: First, the computer program which 
performs the iteration (2) requires only minor modification to become the power 
method applied to (4). The algorithm takes advantage of the sparseness of the 
partitions and it is amenable to acceleration techniques [2], so the calculation is 
performed quite efficiently. The second reason for choosing the power method is 
that it yields an approximation to both the dominant eigenvalue and its associated 
eigenvector. The purpose to be served by this vector is set forth in the next section. 

III. THE INITIAL GUESS 

The iteration scheme (2) requires a first guess xg (O). A known solution of a similar 
problem or, fbr want of better information, the zero vector is often used for XL’). 
In either case, we have the information at hand to modify xi’), at trivial cost, so 
as to reduce the total number of iterations required to obtain a satisfactory solution 
of (1). 
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Equations (I) can be decoupled by a block elimination to give 

(D2 - BtD;lB)x, = BtD;lk- -+ k, s (5) 

We denote the eigenvalues and corresponding eigenvectors of (4) by 
A, > A, 2 *.~ A, > 0 and (vzi}. The solution and the initial guess are expressed ir* 
terms of the D,-orthogonal basis (vzi>. 

ai = 
(vzi , B’D;‘kl + k& 
(1 - A,)(:%, , DPVfi) 

x!) = 1 pivBi 

Pi = <vei , I&x?‘) 
(vzi ) D,v,,) * 

Since the entire spectral decomposition of Dy ~- PD,B is not available, the 
solution cannot be obtained through Eq. (6j. owever, the essential ~i?~ed~~nts 
of its first term are at hand which we now use to adjust (7). 

X2 (0) = X(O) - &r. 2 21 

6 = p1 - a1 . 

It is unnecessary to compute D.v. z z1 which appears in the denominators of CQ and 
,& because its equivalent from the right hand side of (4) wi’lt be saved from tke 
eigenvalue calculation. Thus, we have 

which requires only the matrix vector multiplication D,xkoi and three inner products. 
as significant extra expense. 
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IV. NUMERICAL EXPERIMENTS 

This technique has a disadvantage common to many which are concerned with 
the early part of a sequence: It is difficult to make a quantitative prediction of its 
effectiveness which will hold in general. In fact, for the unlikely case where aI = ,f& 
at the beginning, nothing at all is gained. A more pertinent theoretical objection to 
our strategy is that a completely accurate calculation of vgl and adjustment of 
xh”’ will cause the subsequent iteration (2) to take place in a subspace in which 
h, = p” is no longer the optimal parameter. 

In practice, our eigenvector is not computed with great accuracy. The use of Eq. 
(8) is recommended on the grounds that the initial error vector may be shortened, 
sometimes quite appreciably, in one trivial step and the discrimination in Eq. (2) 
against the vZ1 direction caused by underestimating p will have its effect reduced. 

The calculation of an initial guess in the manner discussed above has been 
included in a computer program which solves the finite difference analog of Pois- 
son’s equation in two dimensions using the one-line Cyclic Chebyshev method. 
Comparisons were made between the zero vector and the result of (8) in terms of 
the number of iterations required to reduce the II norm of the residual to a pres- 
cribed value. These experiments indicate that the calculated guess is indeed worth- 
while. No comparisons were made with the indirect approach of [4, 5, 61. 

Two comparisons were made with a model region consisting of a square with a 
15 x 15 uniform mesh superimposed on it. Poisson’s equation was solved with 
zero boundary conditions and a unit load at the center point. Convergence was 
reached after 30 iterations with a zero guess and after 21 iterations starting with 
the calculated guess. With a right hand side of the differential equation set to zero, 
boundary conditions of zero on three sides of the square, and the boundary 
condition on the fourth side taken to be unity, the number of iterations were 30 and 
23 respectively. A third test was conducted on a more realistic problem; that of 
representing the field in a cylindrical image tube. The total number of discrete 
points was 616, on a mesh which was non-uniform in both directions. Laplace’s 
equation was solved with mixed type boundary conditions. Convergence was 
reached after 63 and 58 iterations respectively for the two starting vectors. For all 
three problems, the stopping criterion was that the II norm of the initial residual 
vector be reduced by a factor of lO-‘j. 

The more modest results of the third case may be more typical in practical prob- 
lems. In any case, the fact that any such improvement in performance may be 
obtained so simply makes this technique worthwhile. 
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